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Scaling of the conductances and the finite-size localization lengths is generalized to anisotropic systems and
tested in two-dimensional systems. Scaling functions of isotropic systems are recovered once the dimension of
the system in each direction is chosen to be proportional to the localization length. It is also shown that the
geometric mean of the localization lengths is a function of the geometric mean of the conductivities. The ratio
of the localization lengths is proportional to the square root of the ratio of the conductivities, which in turn is
proportional to the anisotropy strengtht, in the weak scattering limit.@S0163-1829~97!52132-1#
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Scaling theories have been successfully applied to
problem of Anderson localization1,2 involving the effects of
disorder on the nature of the electronic wave function. T
most remarkable result of the scaling theory is its predicti3

that a continuous metal-insulator transition exists in th
dimensions, and all the states are localized in two dim
sions, in the absence of magnetic field and spin-orbit in
action. The essential hypothesis of the one-parameter sc
theory of localization is that the rate of change of the co
ductance when the size of the system changes is contro
by the conductance alone. The critical conductanceGc that
separates true metals from insulators is estimated1 to beGc

50.1(e2/\). The scaling function should also be univers
within a class that is characterized by a few general sym
tries of the governing Hamiltonian. The scaling theory
sults are supported by a large number of numerical stud2

in d52 and d53. Most notably, finite-size scaling
calculations4 on the transmission properties of a quasi-on
dimensional system explicitly demonstrated the existenc
a universal scaling function close to the critical regime.

Most of the previous work involves isotropic system
560163-1829/97/56~8!/4297~4!/$10.00
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Recently, the problem of Anderson localization in anis
tropic systems has attracted considerable attention,5–8 largely
due to the fact that a large variety of materials are hig
anisotropic. It was recently shown6 that in a highly aniso-
tropic system of weakly coupled planes, states are locali
in the direction parallel and perpendicular to the plane
exactly the same amount of critical disorder, in support
the one-parameter scaling theory which excludes the po
bility of having a wave function localized in one directio
and extended in the other two. However, several issues
garding the relation between the conductances in differ
directions were raised. Most importantly, the question
scaling of conductances and localization lengths was
resolved.6 Although anisotropy is known not to change th
universality and thus the critical behavior of the system,9 the
exact form of the scaling function, on the other hand,
expected to depend on the anisotropy in the form of an
tropic physical parameters such as anisotropic hopping i
grals or geometrical aspect ratios.10

Extending the scaling argument to an anisotropic syst
we assume that the logarithmic derivativeb i , of the dimen-
R4297 © 1997 The American Physical Society
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sionless conductancegi , in any direction will be a function
of the conductance in that direction as well as other dir
tions,

b i5
dloggi

dloga
5b i~$gi%! , ~1!

where a is an appropriate length scale. All thegi become
relevant scaling parameters. All other physical quantit
such as anisotropic hopping integrals or anisotropic g
metrical shapes, should enter only through the conducta
gi . Exactly the same argument can be applied to the sca
function of localization length, obtained from transfer-mat
calculations with a quasi-one-dimensional geometry of cr
sectionM j3Mk ,

l i~M j ,Mk!

j i
5hS M j

j j
,
Mk

jk
D , ~2!

wherel i is the finite-size localization length in the directio
i , andj l ~l 51,2,3! is the localization length for the infinite
system. The fundamental assumption in Eq.~2! is that local-
ization lengths provide the only characteristic length sca
Once the characteristic lengths are measured in terms o
localization lengths in the corresponding directions, the s
ing behaviors of the system within the same universa
class are governed by the same equation.

The scaling functionsb i and h describe the behavior o
both systems with isotropic Hamiltonians but noncubic g
ometry, as well as systems with anisotropic Hamiltonia
Scaling in anisotropic systems in general is not known. O
when the conductances in all directions are the same,
the scaling functionb i will be exactly the same as that of
cubic isotropic system. For an anisotropic system, this
only be achieved by choosing an appropriate geom
which might not be knowna priori. As an example, we will
see that indeed such a procedure works in a system
highly anisotropic hopping. We will demonstrate that in tw
dimensional systems, Eq.~2! can be applied straightfor
wardly such that all the data are described by the sca
functions of the isotropic system. Furthermore, we will a
show that the geometric mean of the localization lengths
universal function of the geometric mean of the bare cond
tivity, and their ratio can also be estimated in the weak sc
tering limit. These results follow directly from applying th
basic idea of scaling theory.

We consider the following Hamiltonian for an anisotrop
2D disordered model:

H5(
n

enun&^nu1(
n,m

tnmun&^mu , ~3!

wheren labels the sites of a square lattice. The on-site en
gies en are independently distributed at random, within
interval of widthW. The second term is taken over all pai
of nearest-neighbor~NN! sites, and the hopping integra
tnm51 or t ~,1!, depending on hopping directions. As
convention, we have assigned the direction with the la
(tnm51) and the small (tnm5t) hopping value as the para
lel (i) and the perpendicular (') directions, respectively.

In two-dimensional systems, Eq.~2! can be written as
-
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l i~M j !

M j
5

j i

j j
f S M j

j j
D , ~4!

wheref (x)5h(x)/x is the scaling function for isotropic sys
tems. We have used the transfer-matrix method2 to calculate
the finite-size localization lengthl i(M j ) for many M j
( i ,j 5 1,2! ~M524, 48, 96, 120, 150, 300! andW52–14 and
severalt andE, for both directions. Figure 1 shows that a
of our raw numerical data for bothlM

i andlM
' for different

anisotropiest, different disorderW, and different energies
E, follow one universal curve, by appropriately choosing t
localization length in the two directions,j i and j' . The
solid line through the data in Fig. 1 is the 2D isotropic sc
ing function. This is a direct confirmation of the scaling r
lation Eq.~4!.

An important consequence of Eq.~4! is that at the critical
point, if any, the geometric mean of the ratio of the finit
size localization length to the cross-section width is a c
stant. This was indeed found6 to be true but interpreted in
stead as a result of possible conformal invariance. We p
out that at the critical point, the geometric mean of the co
ductances along the different directions may not be a c
stant. This behavior of the conductances is different fr
that of lM /M and needs further study for its complete u
derstanding.

To further test the scaling idea we have calculated
conductanceG in the two different directions for our aniso
tropic system. From the multichannel Landauer formula,11,12

G5(e2/h)Tr(t†t), wheret is the transmission matrix. With
anisotropic hoppings, one should choose a geometry o
than the square such that the conductance is the same
the directions and then scale up the size of the system.8 The
conductance should remain isotropic if one parameter sca
theory is correct.5 We have tested this idea in a 2D syste
with t50.1. The ratio of the two localization lengths wa
found to be 10 atW53.6. We have scaled up the system
a rectangle of sizeM3N by a factor of 4, and from Fig. 2
one can clearly see that although the conductance beco
extremely small it remains isotropic, in agreement with t
predictions of the one-parameter scaling theory.5 For a

FIG. 1. The numerically determined scaling function for the 2
anisotropic system for different anisotropic constantst, different
energiesE, and disorderW. The solid line through the data is th
2D isotropic scaling function. They axis isj jl i(M j )/j iM j , while
thex axis isM j /j j . The indexi and j can be either the parallel o
the perpendicular direction, respectively.
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square geometry and with the same parameters as in Fi
the conductances in the two directions would diverge rap
as the system size scales up.

Another length rescaling aspect can be seen by cons
ing the self-consistent theory of localization. It was shown
an earlier work6 that in order for the localization criteria t
be the same in all directions, the length scale has to be
sen proportional to the square root of the bare conductiv
This leads to an equation for the metal-insulator transit
that is exactly the same as that of the isotropic system,
cept that both the bare conductivity and the effective latt
constant are replaced by their geometric means. A direct c
sequence of this formulation is that the geometric mean
the localization~or correlation! lengths should be only a
function of the geometric mean of the bare conductiviti
i.e.,

^j&g5 f l~^s0&g!/Sf , ~5!

where ^ &g denote the geometric mean of the values in
two directions.s0 is the bare conductivity andSf is the
Fermi-surface area that enters through the relations0
;Sf l . l is the mean free path.f l is a function that can be
obtained via the potential well analogy~PWA! or the self-
consistent theory of localization.5 Using the PWA, j
52.72l exp@p2\s0 /e2# was obtained.13

Equation~5! can be easily checked in the weak disord
limit, at which the geometric mean of the bare conductiv
can be shown to bes̄0515A2t/pW2, within the coherent
potential approximation~CPA!.14 For the 2D anisotropic sys
tem, Sf(E50)54pA11t2. We have plottedSf^j'j i&

1/2

versus 15A2t/pW2, and find that the data fall into one un
versal curve for all the different anisotropiest and disorder
W. This weak scattering limit behavior of the geomet
mean of the localization lengths versus the geometric m
of the conductivities is very suggestive of the way the loc
ization lengths have to scale. The full expression, valid
all disorder strength,

s i05
2e2\

p (
k

v i
2~k!

S2
2

@„E2S12E~k!…21S2
2#2 , ~6!

can also be evaluated.S5S12 iS2 is the self-energy ob-
tained by solving a self-consistent equation.5,13,15This shows
remarkably good scaling, as shown in Fig. 3, including
sults forE50, as well as forEÞ0. The curve in Fig. 3 shows

FIG. 2. The conductanceG in units of e2/h of an anisotropic
systemM3N, versusM for t50.1 andE50. Notice thatG along
the two directions is exactly the same.
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how the geometric mean of the localization length depe
on the geometric mean of the bare conductivity in a univer
fashion, independent of the anisotropy, energy, and disor
These results are a strong confirmation of scaling in an
tropic systems. Notice that the geometric mean of the c
ductivities ^s0&g is the appropriate quantity that gives th
same results as in the isotropic case. It is therefore appro
ate that^s0&g will be used in the interpretation of exper
ments in highly anisotropic systems.

The ratio of the localization lengths can be obtained
carrying the length rescaling idea further. We can see that
conductances in all the directions should be the same, if
dimension of the system is proportional to the localizati
length in that direction. This implies the following relation

j i

j j
5S s i

s j
D 1/2

5S s i0

s j 0
D 1/2S a i

a j
D 1/2

. ~7!

s i is the exact value of the scale-dependent conductivity,s i0
is the bare conductivity which can be calculated within t
CPA, a i is the correction factor of the bare conductivity
the i direction. It is very difficult to calculate the correctio
factora i , but it approaches one in the weak scattering lim
In Fig. 4, we show the results ofj' /tj i versus 1/W for
different anisotropiest and energiesE. In the weak disorder
limit, we can approximates by s0, and this is shown as
open symbols in Fig. 4. Notice that in the weak disord
limit, W→ 0, and fort → 0, s0' /s0i;t2, and by using Eq.
~7!, one obtains for the ratio of the localization length
j' /j i;t. This behavior is clearly seen in Fig. 4 for large
W. Agreement with the CPA results for the conductivity a
excellent for weak disorder. Deviation of the ratio from th
open symbols for strong disorder indicates that the true c
ductivity at length scalej is stongly normalized compare
with the bare conductivity. However, it is notable that t
trend of the ratio asW increases is captured by the simp
expression. For largeW, no dependence onE should be
expected for smallE, thus the ratios converge to the sam
value for differentE with t50.3, as can be seen in the ins
in Fig. 4.

In summary, we have performed an extensive numer
study of the scaling properties of highly anisotropic system

FIG. 3. The product of the Fermi surfaceSf with the geometric
mean of the localization lengths^j'j i&

1/2 is plotted versus the geo
metric mean of the bare conductivities^s0's0i&

1/2 for all the ener-
giesE, t, andW.
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Scaling functions of isotropic systems are recovered once
dimension of the system in each direction is chosen to
proportional to the localization length. In the localized r

FIG. 4. The ratio ofj' /tj i is plotted versus 1/W, for t50.1,
0.3, and 0.6 withE50. j' andj i are the localization lengths alon
the two propagating directions. The solid symbols are the nume
results, while the open symbols are the CPA results. In the inse
numerical results ofj' /tj i versus 1/W is plotted for t50.3 with
E50.0, 1.5, and 2.0.
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gime, the ratio of the localization lengths is proportional
the square root of the ratio of the conductivities which in tu
is proportional to the strength of the anisotropyt ~i.e.,
j' /j i;t). Recall that in the extended regime5,6 the ratio of
the correlation length is inversely proportional to the ratio
the conductivity~i.e., j' /j i5s0i /s0';1/t2). It was also
shown that the geometric mean of the localization length
a function of the geometric mean of the conductivitie
Finally, it was numerically shown that the conductanc
along the two different directions of the anisotropic syste
are the same, provided that the dimension of the anisotro
system is proportional to the localization length in this dire
tion. This procedure can be easily used in other anisotro
systems.
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